
Intel® Math Kernel Library
(Intel® MKL) 10.2
In-Depth

Contents

Intel® Math Kernel Library (Intel® MKL) 10.2. 4

Highlights . 4

Features. 4

Multicore ready . . 4

Automatic runtime processor detection. . 4

Support for C and Fortran interfaces. . 4

Support for all Intel® processors in one package. 4

Royalty-free distribution rights. . 4

New in Intel MKL 10.2. 4

Performance Improvements. . 4

C#/.Net support. . 4

BLAS. . 4

LAPACK. . 5

FFT. . 5

PARDISO. . 5

New in Intel® MKL 10.1. 5

Computational Layer. . 5

PARDISO Direct Sparse Solver . . 5

Sparse BLAS . . 5

LAPACK . . 5

Discrete Fourier Transform Interface (DFTI) 5

Iterative Solver Preconditioner . . 6

Vector Math Functions . . 6

User’s Guide . . 6

Performance Improvements in Intel MKL 10.2. 6

Performance Improvements in Intel MKL 10.1. 7

Performance Improvements in Version 10.0. 7

BLAS . . 7

LAPACK . . 7

FFTs . . 7

VML/VSL . . 7

Functionality. 7

Linear Algebra: BLAS and LAPACK. . 7

BLAS. . 8

Sparse BLAS. . 8

LAPACK. . 8

BLAS and LAPACK Performance. . 8

Linear Algebra: ScaLAPACK. . 9

ScaLAPACK Performance. . 9

Raw Performance. . 9

Block Size Robustness. . 10

References. 10

Linear Algebra: Sparse Solvers. . 10

PARDISO*: Parallel Direct Sparse Solver 11

New Out-of-Core Support!. . 11

Iterative Solvers . 11

FGMRES Solver. . 11

Conjugate Gradient Solver. . 11

ILU0/ILUT Preconditioners. . 12

Sparse BLAS . . 12

2

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

References. 12

Fast Fourier Transforms (FFT). . 12

Interfaces . 12

Fortran and C. . 12

Modern FFT Interface. . 12

FFTW Interface. . 12

Performance (Shared Memory Parallel). . 13

2-D Transforms. . 13

3-D Transforms. . 13

Performance (Distributed Memory). . 13

References. 14

Vector Math Library. 15

Performance . . 15

Accuracy Modes . . 15

References. 16

Vector Statistical Library. 16

Convolution/Correlation. . 16

Random Numbers. . 16

Basic Random-Number Generators (BRNGs). 16

Distribution Generator Types. . 16

Random Number Generator Performance 17

Comparison of Intel MKL to Alternative Libraries 17

References. 18

LINPACK Benchmark . 19

Ease of Use . . 19

Performance . 20

Downloads . 20

Questions/Comments?. . 20

References. 20

Compatibility. 20

Operating Systems. . 20

Development Environments. . 20

Processors. . 20

Technical Support. 20

Intel® Premier Support. 20

User Forum. 21

References. 21

3

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

Intel® Math Kernel Library (Intel® MKL) 10.2
Intel® Math Kernel Library (Intel® MKL) offers highly optimized,

extensively threaded math routines for scientific, engineering, and

financial applications that require maximum performance.

Intel MKL is available with the Intel® C++ and Fortran Compilers

Professional Editions and Intel® Cluster Toolkit, as well as a

standalone product.

Intel MKL provides high-performance, future proofing for applications

and productivity for developers. Intel MKL is extremely optimized for

current multicore x86 platforms and will continue to be optimized for

future platforms to ensure applications benefit seamlessly from the

latest architecture enhancements.

Microsoft Visual Studio* developers: Build robust technical

applications more efficiently using the premier library of high-speed

implementations of BLAS, LAPACK, FFTs, and Statistics functions

from within Microsoft Visual Studio 2003*, 2005*, and 2008*.

Highlights
Version 10.2 is now available. See below for a list of the new •	

features and performance improvements.

Intel MKL 10.2 is now optimized for Intel® Xeon® 5500 and Intel® •	

Core™ i7 processors (previously codenamed Nehalem).

See the system requirements for a full list of supported operating •	

systems, compilers, and processors.

Check out •	 WhatIf.intel.com for interesting new technologies related

to Intel MKL.

Features

Outstanding Performance on Intel® processors

Achieve leadership performance from the math library that is highly

optimized for, Intel® Xeon®, Intel® Core™, Intel® Itanium®, and Intel®

Pentium® 4 processor-based systems. Special attention has been paid

to optimizing multithreaded performance for the Intel® Xeon® Quad-

core processors and the new Intel® Core™ i7 Quad-Core processors.

Intel MKL strives for performance, competitive with that of other math

software packages on nonIntel® processors.

Multicore ready

Excellent scaling on multicore and multiprocessor systems•	 :

Use the built-in parallelism of Intel MKL to automatically obtain

excellent scaling on multicore and multiprocessors including Intel

Xeon 5500 and the latest dual and quad-core systems. Intel MKL

BLAS, Fast Fourier transforms, and Vector Math, among many other

routines are threaded using OpenMP*.

Thread-Safety•	 : All Intel MKL functions are thread-safe. A

nonthreaded sequential version of Intel MKL is also provided.

Automatic runtime processor detection

A runtime check is performed so that processor-specific optimized

code is executed, ensuring that your application achieves optimal

performance on whatever system it is executing on.

Support for C and Fortran interfaces

Intel MKL includes both C and Fortran interfaces, unlike some

alternative math libraries that require you to purchase multiple

products.

Support for all Intel® processors in one package

Intel MKL includes support for Intel® Xeon®, Intel® Core™, Intel® Pentium

4, Intel Itanium architectures in a single package. Alternative math

libraries require you to purchase multiple products for all supported

processors.

Royalty-free distribution rights

Redistribute unlimited copies of the Intel MKL runtime libraries with

your software.

New in Intel MKL 10.2
This release of Intel Math Kernel Library (Intel MKL 10.2) provides

optimized multithreaded performance for the newest Intel®

processors, especially the Intel® Xeon® 5500 processor.

Performance Improvements

Performance improvements cover several key math routines including

LINPACK, Out-of-core PARDISO, BLAS, and FFT. In addition, Intel

AVX (Advanced Vector Extensions) support is included for advanced

vectorization being introduced in upcoming Intel® architecture

processors. This provides support for 256-bit vector operations, in

many cases doubling performance. These are provided earlier to test

and develop forward scaling in your applications.

C#/.Net support

Intel MKL 10.2 introduces C#/.Net support examples for calling Intel

MKL functions.

BLAS

Introduce better coverage of threading in level 1 BLAS routines, in

addition to the threading for level 2 and level 3 BLAS routines.

4

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

http://WhatIf.intel.com

LAPACK

Intel MKL 10.2 includes complete support for LAPACK 3.2.

FFT

Intel MKL 10.2 introduces these key new additions to FFT:

- Scaling for scaling factors 1/N, 1/sqrt(N)

- Implement DFTI_FORWARD_SIGN

- Implement Radices mix of 7, 11, and 13

- Optimize real data transforms in Cluster FFT

Additionally, FFTW interfaces are included that support

standardization for FFTs.

PARDISO

Intel MKL 10.2 introduces single precision support in PARDISO (Parallel

Direct and Iterative Solvers) and several performance enhancements.

New in Intel® MKL 10.1
This release of Intel Math Kernel Library (Intel MKL 10.1) provides

optimized multithreaded performance for the newest Intel®

processors (Intel® Xeon® 7400 series, Intel® Core™). Intel® MKL 10.0

introduced a new “layered” architecture to better support the varied

usage models of our users as well as merged the standard and cluster

editions so there is a single comprehensive package.

Optimizations for the New Intel Xeon and Intel Core Processors.

For more information see section “Performance Improvements” in 10.1

on page 7.

“Layered” Architecture Introduced in Intel MKL 10.0

Intel MKL 10.0 introduced a rearchitected product to provide multiple

layers so that the base Intel MKL package supports numerous

configurations of interfaces, compilers, and processors in a single

package. Many other library vendors have specific versions that must

be first found, downloaded, installed, and tested depending on the

particular configuration of your development environment. This new

Intel MKL architecture is intended to provide maximum support for our

varied customers’ needs, while minimizing the effort it takes to obtain

and utilize the great performance of Intel MKL. For more information,

please refer to the “Using Intel MKL Parallelism” section of the Intel

MKL User’s Guide.

Computational Layer

This layer forms the heart of Intel MKL. A runtime check is performed

so that processor-specific optimized code is executed. Users can build

custom shared objects to include only the specific code needed and

thus reduce the size of this layer if size is an issue.

PARDISO Direct Sparse Solver

Out-of-core memory implementation for solving larger problems •	

on SMP systems

Support of separate backward/forward substitution for •	

DSS/PARDISO

A new parameter for turning off iterative refinement for •	

DSS interface

A new parameter for checking sparse matrix structure for •	

PARDISO interface

Sparse solver functionality now integrated into the core math •	

library, and it is no longer necessary to link a separate solver library

Sparse solver functionality that can now be linked dynamically•	

Sparse BLAS

Added routines for computing the sum and product of two sparse •	

matrices stored in compressed sparse row format

Adder routines for converting between different sparse matrix •	

formats

Added support for all data types (single precision, complex and •	

double complex)

Added sparse 0-based indexing•	

Added single precision support added•	

Threaded Level-3 Sparse BLAS triangular solvers•	

LAPACK

The capability to track and/or interrupt the progress of lengthy •	

LAPACK computations has been added via a callback function

mechanism. A function called mkl_progress can be defined in a user

application, which will be called regularly from a subset of the MKL

LAPACK routines. Refer to the specific function descriptions to see

which LAPACK functions support the feature.

Discrete Fourier Transform Interface (DFTI)

Added the DftiCopyDescriptor function for convenience when •	

using the FFTs

The size of statically linked executables calling DFTI has been •	

reduced significantly.

Complex storage now available for real-to-real transforms•	

5

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

Iterative Solver Preconditioner

ILUT accelerator/preconditioner for the Intel MKL RCI iterative •	

solvers

Vector Math Functions

New Mul, Conj, MulbyConj, CIS, Abs functions •	

New “Enhanced Performance” mode EP Mode is for applications •	

where math function inaccuracies don’t dominate parameter

inaccuracies (e.g., Monte Carlo simulations and Media applications)

All VML functions are now threaded •	

Optimized versions of the Cumulative Normal Distribution •	

(CdfNorm), its inverse (CdfNormInv), and the inverse complementary

error function (ErfcInv) have been added to the Vector Math Library.

User’s Guide

We have greatly improved our Intel MKL User’s Guide. It is •	

an indispensable tool for working with Intel MKL. Visit the

Documentation page to download it or view it online.

Compiler Support: Support for new compilers, including the •	

new Intel® compilers 11.0 and PGI* compilers

Performance Improvements in Intel MKL10.2
Further threading in BLAS level 1 and 2 functions for Intel® 64 •	

architecture

Level 1 functions (vector-vector): (CS,ZD,S,D)ROT, (C,Z,S,D)COPY, --

and (C,Z,S,D)SWAP

Increase in performance by up to 1.7-4.7 times over version »»

10.1 Update 1 on 4-core Intel Core i7 processors depending

on data location in cache

Increase in performance by up to 14-130 times over version »»

10.1 Update 1 on 24-core Intel® Xeon® processor 7400 series

system, depending on data location in cache

Level 2 functions (matrix-vector): (C,Z,S,D)TRMV, (S,D)SYMV, (S,D)--

SYR, and (S,D)SYR2

Increase in performance by up to 1.9-2.9 times over version »»

10.1 Update 1 on 4-core Intel Core i7 processor, depending

on data location in cache

Increase in performance by up to 16-40 times over version »»

10.1 Update 1 on 24-core Intel Xeon processor 7400 series

system, depending on data location in cache

Introduced recursive algorithm in 32-bit sequential version •	

of DSYRK for up to 20% performance improvement on Intel

Core i7 processors and Intel Xeon processors in 5300, 5400,

and 7400 series.

Improved LU factorization (DGETRF) by 25% over Intel MKL 10.1 •	

Update 1 for large sizes on the Intel® Xeon® 7460 Processor; small

sizes are also dramatically improved

BLAS *TBMV/*TBSV functions now use level 1 BLAS functions to •	

improve performance by up to 3% on Intel® Core™ i7 processors and

up to 10% on Intel® Core™2 processor 5300 and 5400 series.

Improved threading algorithms to increase DGEMM performance •	

Up to 7% improvement on 8 threads and up to 50% on 3,5,7 --

threads on the Intel Core i7 processor

Up to 50% improvement on 3 threads on Intel Xeon processor --

7400 series

Threaded 1-D complex-to-complex FFTs for non-prime sizes •	

New algorithms for 3-D complex-to-complex transforms deliver •	

better performance for small sizes (up to 64x64x64) on 1 or 2

threads

Implemented high-level parallelization of out-of-core (OOC) •	

PARDISO when operating on symmetric positive definite matrices

Reduced memory use by PARDISO for both in-core and out-of-core •	

on all matrix types

PARDISO OOC now uses less than half the memory previously --

used in Intel MKL 10.1 for real symmetric, complex Hermitian, or

complex symmetric matrices.

Parallelized reordering and symbolic factorization stage in •	

PARDISO/DSS

Up to 2 times better performance (30% improvement on average) •	

on Intel Core i7 and Intel Core 2 processors for the following VML

functions: v(s,d)Round, v(s,d)Inv, v(s,d)Div, v(s,d)Sqrt, v(s,d)Exp, v(s,d)

Ln, v(s,d)Atan, v(s,d)Atan2

Optimized versions of the following functions available for Intel® •	

Advanced Vector Extensions (Intel® AVX)

BLAS: DGEMM --

FFTs --

VML: exp, log, and pow --

See important information in the Intel® MKL User’s Guide --

regarding the mkl_enable_instructions() function for access to

these functions.

6

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

Performance Improvements in Intel MKL 10.1
We improved performance in all areas of the library. Below are some

specific measured performance gains. Performance improvements

are illustrated for each Intel MKL product domain (BLAS/LAPACK, FFT,

VML, VSL, etc.)

BLAS •	

32-bit improvements •	

Up to 50% improvement for (Z,C)GEMM on Quad-Core Intel Xeon --

processor 5300 series

10% improvement for all (D,S,Z,C)GEMM code on Quad-Core Intel --

Xeon processor 5400 series

64-bit improvements •	

50% improvement for SGEMM on the Intel Core i7 processor. --

30% improvement for right-side cases of DTRSM on the Intel --

Core i7 processor

Direct sparse solver (DSS/PARDISO): •	

35% performance improvement on average for out-of-core --

PARDISO

VML and VSL •	

Optimizations on the Intel® Core™ i7 processor : •	

Up to 17% improvement for the following VML functions: Asin, --

Asinh, Acos, Acosh, Atan, Atan2, Atanh, Cbrt, CIS, Cos, Cosh, Conj,

Div, ErfInv, Exp, Hypot, Inv, InvCbrt, InvSqrt, Ln, Log10, MulByConj,

Sin, SinCos, Sinh, Sqrt, Tanh

Up to 67% improvement for uniform random number generation--

Up to 10% improvement for VSL distribution generators based --

on Wichmann-Hill, Sobol, and Niederreiter BRNGs (64-bit only)

Performance Improvements in Version 10.0

BLAS

Threading of DGEMM was improved for small and middle sizes—•	

outer product sizes by 10%, square sizes by 80%

DGEMM/SGEMM large square and large outer product sizes were •	

improved by 4-5% on 1 thread and 10-15% on 8 threads

DTRSM, DTRMM, and DSYRK were improved by 5-30% •	

Other level 3 real functions were improved by 2-4% on large sizes•	

LAPACK

We dramatically improved the performance of several linear •	

equation solvers (?spsv/?hpsv/?ppsv, ?pbsv/?gbsv, ?gtsv/?ptsv,

?sysv/?hesv). Banded and packed storage format and multiple right-

hand sides cases see speed-ups of up to 100 times.

All symmetric eigensolvers (?syev/?syev, ?syevd/?heevd, •	

?syevx/?heevx, ?syevr/?heevr) have significantly improved, since

tridiagonalization routine (?sytrd/?hetrd) has sped up to 4 times.

All symmetric eigensolvers in packed storage (?spev/?hpev, •	

?spevd/?hpevd, ?spevx/?hpevx) have significantly improved, since

tridiagonalization routine in packed storage (?sptrd/?hptrd) has

sped up to 3 times.

Up to 2 times improvement for a number of routines applying •	

orthogonal/unitary transformations (?ormqr/?unmqr,

?ormrq/?unmrq, ?ormql/?unmql, ?ormlq/?unmlq).

FFTs

Improved single threaded performance of up to 1.8 times on •	

complex 1D FFTs for power-of-two sizes

On Intel® 64 architecture-based systems running in 64-bit mode •	

single precision complex backward 1D FFT for data sizes greater

than 2^22, elements have been sped up by up to 2 times on 4

threads and up to 2.4 times on 8 threads on Intel Itanium processors.

VML/VSL

Performance of VSL functions is improved on non-Intel processors •	

by approximately 2 times on average.

Performance of VML vdExp, vdSin, and vdCos functions is improved •	

on non-Intel processors by 18% on average.

Performance of VSL functions is improved on IA-32 and Intel® 64 •	

architecture by 7% on average.

Functionality

Linear Algebra: BLAS and LAPACK

Employ BLAS and LAPACK routines that are highly optimized for Intel

processors, and that provide significant performance improvements

over alternative implementations. Intel MKL 10.2 is compliant with the

new 3.2 release of LAPACK.

The BLAS and LAPACK libraries are time-honored standards for

solving a large variety of linear algebra problems. The Intel Math

Kernel Library contains an implementation of BLAS and LAPACK

that is highly optimized for Intel processors. Intel MKL can enable

you to achieve significant performance improvements over

alternative implementations of BLAS and LAPACK.

7

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

BLAS

Basic Linear Algebra Subprograms (BLAS) provide the basic vector

and matrix operations underlying many linear algebra problems. Intel®

MKL BLAS support includes:

 BLAS Level 1 - vector-vector operations •	

 BLAS Level 2 - vector-matrix operations •	

 BLAS Level 3 - matrix-matrix operations •	

 Sparse BLAS - an extension of BLAS Levels 1, 2, and 3•	

Multiple matrix storage schemes (Full, Packed, Banded) are provided

for BLAS levels 2 and 3.

Gain the performance enhancements of multiprocessing without

altering your application using parallelized (threaded) BLAS routines

from Intel MKL. If you wish to manage threading in your applications,

all BLAS functions within Intel MKL are thread-safe.

Sparse BLAS

Achieve performance improvements and lower memory requirements

with sparse BLAS routines that have been carefully optimized for

data sparsity. Sparse BLAS includes a set of functions that perform

common vector and matrix operations on sparse data (data where

the majority of elements are zero). Sparse BLAS coverage includes

selected level 1, 2, and 3 BLAS routines for double-precision real

functions. Sparse BLAS are often used in conjunction with sparse

solvers. Intel MKL supports both NIST* and SparseKit* style interfaces.

The following Matrix Types and Data Storage Formats are supported:

Matrix Types Data Storage Formats

General Compressed Sparse Row (CSR)

Symmetric Compressed Sparse Column (CSC)

Triangular Block Sparse Row (BSR)

Diagonal Diagonal (DIA)

Skew-symmetric
Coordinate (COO)

Skyline

LAPACK

Intel MKL includes Linear Algebra Package (LAPACK) routines that are

used for solving:

 	Linear equations •	

 	Eigenvalue problems •	

 	Least squares problems •	

 	Singular value problems•	

LAPACK routines support both real and complex data. Routines

are supported for systems of equations with the following types

of matrices: general, banded, symmetric or Hermitian, triangular,

and tridiagonal. The LAPACK routines within Intel MKL provide

multiple matrix storage schemes. LAPACK routines are available

with a Fortran interface.

BLAS and LAPACK Performance

Double-precision general matrix-matrix multiply (DGEMM) is the

workhorse routine for dense linear algebra. The charts below compare

DGEMM performance of Intel MKL 10.2 to ATLAS* (Automatically

Tuned Linear Algebra Software). ATLAS is a popular linear algebra

software package that includes the complete BLAS API and a small

subset of the LAPACK API. More information on ATLAS is available at

http://math-atlas.sourceforge.net/.*

Intel MKL has been optimized for performance and tuned to provide

excellent scaling for multiple threads. The performance benefits of

using Intel MKL on today’s dual and quad-core processors can be 2-5

times that of alternatives. The charts below show the following:

1. Intel MKL can provide significant performance benefit over ATLAS*.

2. The multiple processor/threading performance scaling of Intel MKL

BLAS and LAPACK is impressive.

Configuration Info
• Versions: Intel® MKL 10.2 ATLAS 3.8.3
• Hardware:
• OS: Fedora 10 x86_64

Quad-Core Intel® Xeon® Processor W5580 3.2Ghz 8MB L2 cache 12GB Memory

Intel® C++ Compiler v10.1.015
Two Intel® Xeon™ X5355 Processors at 2.66 GHz (8 cores), 4GB Main Memory, 4 MByte L2 Cache running

0

20

40

60

80

100

64 88 96 104 116 128 132 144 160 188 192 208 224 256 320 384 512G
Fl

op
s

(P
ea

k
Pe

rf
or

m
an

ce
 1

0
2

.4
 G
fl
op

s)

Matrix Size (M=20000, N=4000)

Intel® MKL BLAS Threaded Performance
DGEMM: Intel MKL Vs ATLAS

Intel MKL - 8 threads Intel MKL - 4 threads Intel MKL - 2 threads Intel MKL - 1 thread
ATLAS - 8 threads ATLAS - 4 threads ATLAS - 2 threads ATLAS - 1 thread

8

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

http://math-atlas.sourceforge.net/

Figure 2: PDGETRF Performance Comparison Varying Problem Size

Because NETLIB ScaLAPACK requires users to link to an

implementation of BLAS, the Intel MKL performance improvements

from ScaLAPACK versus BLAS optimizations can be isolated and

identified. A comparison of Intel MKL with NETLIB, where both are

using Intel MKL BLAS, shows that the optimizations Intel has made

specifically for ScaLAPACK constitute a 15 percent performance

advantage over the NETLIB ScaLAPACK. The combined optimizations

in Intel MKL ScaLAPACK and BLAS can deliver approximately 50%

performance improvement overall when compared to NETLIB

ScaLAPACK using ATLAS* BLAS.

These charts show both the impressive scaling of Intel® MKL DGEMM

and LAPACK (dgetrf) when using multiple threads as well as the

performance advantage over ATLAS and FFTW respectively.

In summary, the BLAS and LAPACK functionality included in Intel

MKL is highly optimized for Intel processors and can significantly

increase the performance of your application compared to alternative

implementations of BLAS and LAPACK.

Linear Algebra: ScaLAPACK

The Intel MKL implementation of ScaLAPACK can provide

significant performance improvements over the standard NETLIB

implementation.

Intel Math Kernel Library provides the underlying components of

ScaLAPACK (Scalable Linear Algebra Package), including a distributed

memory version of BLAS (PBLAS or Parallel BLAS) and a set of

Basic Linear Algebra Communication Subprograms (BLACS) for

interprocessor communication.

ScaLAPACK is a standard package of routines for solving linear algebra

problems on distributed memory multiprocessor machines (clusters).

ScaLAPACK Performance

The Intel MKL implementation of the ScaLAPACK library is specially

tuned for Intel Xeon, Intel Itanium, and Intel Pentium processor-based

systems.

ScaLAPACK includes two areas of Linear Algebra—direct solvers and

the eigenvalue problems. As such, we will look at both PDGETRF

(a direct solver used for solving linear systems of equations) and

PDSYEV (used for solving eigenvalue problems). PDGETRF (Parallel,

Double precision, GEneral, TRiangular matrix Factorization) is a key

function in the linear equations solver area because it is a general

factorization routine that applies to many classes of matrices, and

because the lower upper (LU) Factorization that it completes is the

performance-intensive portion of linear equations solvers.

In our tests, we compare the Intel MKL implementation of ScaLAPACK

to the publicly available implementation from NETLIB. We show the

performance of Netlib ScaLAPACK using BLAS from Intel MKL as well

as ATLAS*. More information on the ScaLAPACK library is available at

http://www.netlib.org/scalapack/.*

Raw Performance

Figure 2 shows performance on a 32-node cluster with 64 Intel Xeon

processors for various problem and memory sizes. Figure 2 illustrates

that:

1.	 Intel MKL ScaLAPACK significantly outperforms NETLIB

ScaLAPACK.

2.	 Intel MKL is even more impressive when compared to NETLIB

ScaLAPACK using ATLAS* BLAS.

Figure 1: Relationship of ScaLAPACK and Components
ScaLAPACK diagram, image courtesy of Innovative Computing Laboratory*

Global Addressing

Local Addressing

Platform Independent

Platform Specific

ScaLAPACK
Scalable Linear

Algebra Package

LAPACK
Linear Algebra

Package

BLAS
Basic Linear Algebra

Subprograms

BLACS
Basic Linear Algebra

Communications
Subprograms

MPI
Message Processing

Interface

PBLAS
Parallel Basic Linear

Algebra Subprograms

9

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

http://www.netlib.org/scalapack/

In figure 3 below, we look at the PDSYEV, which computes

eigenvalues and eigenvectors of a real symmetric matrix. Using the

same 32-node (64 core) cluster of Intel Xeon processors we see how

Intel MKL can deliver double the performance of NETLIB ScaLAPACK.

The Intel MKL implementation of ScaLAPACK is tolerant of block

size differences. Figure 5 below shows how Intel MKL provides

approximately the same high performance regardless of block size.

The same cannot be said for NETLIB ScaLAPACK.

In summary, the Intel MKL implementation of ScaLAPACK is highly

optimized for Intel® processors and can significantly increase the

performance of your application compared to other implementations

of ScaLAPACK.

References
ScaLAPACK Users Guide: Find a detailed description of ScaLAPACK

usage made available by netlib.org at http://www.netlib.org/

scalapack/slug/node1.html.

Linear Algebra: Sparse Solvers

Solve large, sparse linear systems of equations with the PARDISO

Direct Sparse Solver—an easy-to-use, thread-safe, high-performance,

and memory-efficient software library licensed from the University

of Basel. Intel MKL also includes Conjugate Gradient and FGMRES

iterative sparse solvers.

The Intel Math Kernel Library includes sparse solvers that use both

direct and indirect/iterative methods.

Intel® Math Kernel Library
Sparse Solvers

Matrix Types Direct Indirect/Iterative

General PARDISO (d, z)
(Parallel Direct Solver)

FGMRES (d)

Intel® Core™
processor family

Positive PARDISO (d, z)
(Parallel Direct Solver)

Conjugate Gradient (d)

Indefinite PARDISO (d, z)
(Parallel Direct Solver)

d: Supports double-precision data
z: Supports double-precision, complex data

A major benefit of distributed memory parallel computing (clusters)

is the ability to achieve parallel computing scales of very large

magnitude. As such, users of clusters often have a particular

interest in the ability of software to scale in performance along

with the system size. The classic test is to increase the problem size

proportionally with the increase in nodes and observe the extent to

which the performance grows linearly. Figure 4 below displays this

and shows that Intel MKL can provide tremendous gains over NETLIB

using ATLAS BLAS on large systems.

Block Size Robustness

When running ScaLAPACK, you must decide how to “block” your data.

The process of determining how to distribute your data among nodes

involves choosing an appropriate block size. The block size determines

the amount of data that goes to each node. This requires effort, and

choosing the wrong block size can have significant adverse effects

on performance.

Figure 3: PDSYEV Performance Comparison Varying Problem Size

Figure 4: Performance Comparison Varying Cluster Size

Figure 5: Performance Comparison Varying Block Size

10

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

http://www.netlib.org/scalapack/slug/node1.html
http://www.netlib.org/scalapack/slug/node1.html

PARDISO*: Parallel Direct Sparse Solver

New Out-of-Core Support!

In version 10.0 we added support for out-of-core memory to

PARDISO. While computers have greatly increased memory capacity,

there continue to be a large number of problems for which problem

sizes are too great to solve with in-memory solutions. For customers

who are encountering problem size limitations, we encourage you to

try our new out-of-core memory PARDISO* solution.

The PARDISO* solver, licensed from the University of Basel, is a

thread-safe, high-performance, memory-efficient software library

for solving large sparse, symmetric, and asymmetric linear systems of

equations on shared-memory multiprocessors.

The PARDISO solver exploits pipelining parallelism and memory

hierarchies with a combination of left- and right-looking level-3 BLAS

super-node techniques. To improve sequential and parallel sparse

numerical factorization performance, the algorithms are based on a

level-3 BLAS update.

For sufficiently large problem sizes, numerical experiments

demonstrate that the scalability of the parallel algorithm is nearly

independent of the shared-memory multiprocessing architecture,

and speedups of up to seven times (on eight processors) have

been observed. This approach to parallelism is based on OpenMP

directives.

The CCLRC (UK) has published a detailed analysis of direct sparse

solvers in which PARDISO is found to perform very well compared to

alternatives. View the report home page at http://epubs.cclrc.ac.uk/

work-details?w=34126 or go directly to the .PDF file [401KB] at

http://epubs.cclrc.ac.uk/bitstream/724/raltr-2005005.pdf.

Cranes Software has also published a paper on the use of Intel® MKL

PARDISO in Finite Element Analysis applications. Download the .PDF

file [187KB] at http://www.intel.com/cd/software/products/asmo-na/

eng/371766.htm.

PARDISO supports a wide range of sparse matrix types and computes

the solution of real or complex; symmetric, structurally symmetric,

or asymmetric; positive definite, indefinite, or Hermitian sparse

linear systems of equations on shared-memory multiprocessing

architectures.

Iterative Solvers
Intel MKL includes iterative sparse solvers that can be used to solve

a general and symmetric positive-definite system of linear algebraic

equations.

The solvers are based on a reverse communication interface (RCI)

scheme that makes the user responsible for providing certain

operations for the solver (for example, matrix-vector multiplications).

This scheme gives the solvers great flexibility, as they are

independent of the specific implementation of operations such as

matrix-vector multiplication.

FGMRES Solver

FGMRES is a popular solver for solving a general sparse system of

linear equations. The general applicability allows this solver to apply

in a wide range of situations. The solver accounts for sparsity in the

matrices, thereby enabling the solution of larger problem sizes than

could be handled by a dense approach, as well as solving large sparse

problems faster than a dense approach could.

Conjugate Gradient Solver

The Conjugate Gradient (CG) solver is suitable for the numerical

solution of systems of linear equations represented by a matrix that is

symmetric and positive definite. The conjugate gradient method is an

iterative method, so it can be applied to sparse systems which are too

large to be handled by direct methods. Such systems arise regularly

when numerically solving partial differential equations. The CG solver

is implemented in two versions: one for a system of equations with

a single right-hand side, and another for systems of equations with

multiple right-hand sides.

PARDISO Sparse Solver Matrices

Indefinite
Pos.

Definite
Indefinite

Pos.
Definite

Real Hermitian Complex Real Complex

Symmetric Unsymmetric

PARDISO

11

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

http://epubs.cclrc.ac.uk/work-details?w=34126
http://epubs.cclrc.ac.uk/work-details?w=34126
http://epubs.cclrc.ac.uk/bitstream/724/raltr-2005005.pdf
http://www.intel.com/cd/software/products/asmo-na/eng/371766.htm
http://www.intel.com/cd/software/products/asmo-na/eng/371766.htm

ILU0/ILUT Preconditioners

Preconditioners (also referred to as “accelerators”) are used to

accelerate an iterative solution process. In some cases, their use can

reduce dramatically the number of iterations and thus lead to better

solver performance. Intel MKL currently includes two preconditioners

called ILU0 (Incomplete LU Factorization)and ILUT (Incomplete LU

Factorization with Threshold). The ILU0/ILUT preconditioners can

be applied to any nondegenerate matrix and can be used alone or

together with the MKL FGMRES solver. Both preconditioners are based

on a well-known factorization of the original matrix into a product

of two triangular matrices (low triangular and upper triangular).

Usually this decomposition leads to some fill-in in the resulting matrix

structure as compared to the original matrix however the distinctive

feature of the ILU0 preconditioner is that it preserves the structure

of the original matrix in the result, while ILUT preconditioner controls

the number of fill-ins. ILUT preconditioner is more reliable, while

computations with ILU0 can normally be performed faster and with

less memory usage.

Sparse BLAS

Sparse solvers are often used in conjunction with sparse BLAS. Sparse

BLAS is a set of functions that perform a number of common vector

and matrix operations on sparse data. Sparse vectors and matrices

are those in which the majority of elements are zeros. Intel MKL

includes an implementation of sparse BLAS that has been specially

optimized to take advantage of data sparsity. Sparse BLAS coverage

includes selected BLAS level 1 routines for all data types and level 2

and 3 BLAS routines for double-precision real functions. Matrix types

include general matrices, symmetric matrices, triangular matrices, anti-

symmetric, and diagonal matrices. Data structures supported include

Compressed Sparse Row (CSR), Compressed Sparse Column (CSC),

diagonal, coordinate, and skyline formats.

References
Linear Solver Basics (PDF 377KB): Find an overview of the terms and

concepts associated with solutions to systems of linear equations at

http://cache-www.intel.com/cd/00/00/22/97/229716_229716.pdf.

CCLRC Report on Direct Sparse Solvers (PDF 401KB): See a detailed

comparison of the performance of many direct sparse solvers at

http://epubs.cclrc.ac.uk/bitstream/724/raltr-2005005.pdf.

Utilization of Parallel Solver Libraries to Solve Structural and

Fluid Problems (PDF 187KB): Read a whitepaper by Cranes Software

that analyzes the ability of the Intel MKL PARDISO sparse solver in

Finite Element Analysis (FEA) applications at http://www.intel.com/cd/

software/products/asmo-na/eng/371766.htm.

Fast Fourier Transforms (FFT)

Utilize our multidimensional FFT routines (1D up to 7D) with a

modern, easy-to-use C and Fortran interface. Intel MKL supports

distributed memory clusters with the same API, enabling you to

improve your performance by distributing the work over a large

number of processors with minimal effort. Intel MKL also provides

compatibility with the FFTW 2.x and 3.0 interfaces making it easy for

current FFTW users to plug Intel MKL into their existing applications.

Fourier transforms are used in digital signal processing, image

processing, and in partial differential equation (PDE) solvers. The Fast

Fourier Transform (FFT) functionality in Intel Math Kernel Library has

been highly optimized for Intel® architecture-based machines.

Intel MKL also provides support for distributed memory multiprocessor

architecture machines (clusters).

Features of Intel® MKL Fast Fourier Transforms include:

High performance •	

Outstanding multiprocessor scaling •	

Multidimension support (1-D up to 7-D) •	

Mixed-radix support •	

Modern, easy-to-use interface •	

FFTW 2.x and 3.x interfaces•	

Interfaces

Fortran and C

Both Fortran and C interfaces exist for all FFT functions.

Modern FFT Interface

Intel MKL offers a novel FFT interface that is specifically designed to

be easier to use and maintain.

FFTW Interface

Intel MKL includes FFTW 2.x and 3.x compatibility APIs, enabling FFTW

users to integrate Intel® MKL with minimal effort. Our goal is to provide

FFTW users with easy access to the high performance and quality

of Intel MKL Fast Fourier Transforms. FFTW is an alternative FFT

package from MIT. See the Technical User Notes at http://www.intel.

com/software/products/mkl/docs/fftw_mkl_user_notes_2.htm.

FFTW 3.x interface •	

FFTW 2.x interface•	

12

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

http://cache-www.intel.com/cd/00/00/22/97/229716_229716.pdf
http://epubs.cclrc.ac.uk/bitstream/724/raltr-2005005.pdf
http://www.intel.com/cd/software/products/asmo-na/eng/371766.htm
http://www.intel.com/cd/software/products/asmo-na/eng/371766.htm
http://www.intel.com/software/products/mkl/docs/fftw_mkl_user_notes_2.htm
http://www.intel.com/software/products/mkl/docs/fftw_mkl_user_notes_2.htm

Performance (Shared Memory Parallel)

Intel MKL Fast Fourier Transforms are highly optimized for medium

and large size transforms. The charts below compare the performance

of Intel MKL with FFTW, a popular FFT software package. The charts

illustrate these key points:

Intel MKL offers outstanding performance for medium and large •	

size transforms.

Intel MKL offers outstanding scalability for multiprocessor systems. •	

Intel MKL compares favorably to FFTW for medium and large size •	

transforms.

Note: For all tests below, a fftw_plan_dft_xd() was called using

the FFTW_PATIENT flag to ensure good performance was achieved

for FFTW.

2-D Transforms

Two-dimensional transforms are large enough that they can benefit

significantly from multiprocessing. The following charts illustrate how

Intel MKL provides significantly better threaded performance than

FFTW. In fact, Intel MKL single thread performance often outperforms

the 2, 4, and 8 thread performance of FFTW.§

3-D Transforms

Three-dimensional transforms show the same behavior as the two-

dimensional transforms. Intel MKL excels at providing excellent

performance scaling for medium and large transforms.§

Performance (Distributed Memory)

Intel MKL also provides support for distributed memory multiprocessor

architecture machines (clusters). Included in this support are FFTs

designed for distributed memory parallelism. As cluster systems are

often configured with much higher degrees of parallelism than shared

memory parallel systems, Intel MKL expands headroom for problem

size and performance, particularly for large problems.

The charts illustrate these key points:

Intel MKL offers outstanding performance across a wide range of •	

transform sizes.

Intel MKL offers increasing performance benefit over FFTW as the •	

problem size increases.

13

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

In summary, the Fast Fourier Transform functionality of the Intel

Math Kernel Library offers outstanding performance and scalability

across a wide range of problem sizes that are of interest to the high

performance computing community. Unlike FFTW, Intel MKL does not

require the time-consuming process of doing preproduction machine

calibration runs (“plan creation”) prior to running one’s software. Intel

MKL provides FFT support for distributed memory parallel computing

systems and provides outstanding performance headroom for

larger problem sizes. Intel MKL includes a FFTW interface to enable

developers to easily compare performance and switch from FFTW to

Intel MKL with minimal source code changes.

References
FFTW 2.x Wrappers: Learn more about porting FFTW 2.x applications

to Intel MKL at http://www.intel.com/software/products/mkl/docs/

fftw2xmkl_notes.htm.

FFTW 3.x Wrappers: Learn more about porting FFTW 3.x applications

to Intel MKL at http://www.intel.com/software/products/mkl/docs/

fftw3xmkl_notes.htm.

API Comparison of Intel MKL vs. FFTW: View an article on mapping

between the FFTW and Intel MKL Fast Fourier Transform APIs at

http://www.intel.com/cd/ids/developer/asmo-na/eng/223902.

htm?page=1.

14

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

http://www.intel.com/software/products/mkl/docs/fftw2xmkl_notes.htm
http://www.intel.com/software/products/mkl/docs/fftw2xmkl_notes.htm
http://www.intel.com/software/products/mkl/docs/fftw3xmkl_notes.htm
http://www.intel.com/software/products/mkl/docs/fftw3xmkl_notes.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/223902.htm?page=1
http://www.intel.com/cd/ids/developer/asmo-na/eng/223902.htm?page=1

Performance

The Vector Math Library in Intel MKL can provide substantial

performance advantages over scalar implementations. The chart

below compares Intel® MKL VML functions to the equivalent functions

implemented by LibM and SVML, the runtime libraries that support

calls to math functions from the Intel® C++ and Fortran compilers. The

chart shows that most VML functions provide a 2-5x performance

benefit in many cases and even up to 15x-30x in a few cases.

Vector Math Library
Increase application performance with vectorized implementations

of computationally intensive core mathematical functions (power,

trigonometric, exponential, hyperbolic, logarithmic, and more).

The Vector Math Library (VML) included with Intel Math Kernel Library

provides highly optimized vector implementations of computationally

intensive core mathematical functions. The library has both Fortran

and C interfaces for all VML functions. All functions have also been

threaded (click on function to see threaded performance).

Supported VML Functions

Arithmetic Trigonometric Hyperbolic Power/Root

Add Sin^ Sinh^ Pow^

Sub Cos^ Cosh^ Powx^

Div SinCos Tanh^ Pow2o3

Sqr CIS^^ Asinh^ Pow3o2

Mul Tan^ Acosh^ Sqrt^

Conj^^ Asin^ Atanh^ Cbrt

MulByConj^^ Acos^ InvSqrt

Abs Atan^ InvCbrt

 Atan2 Hypot

 Inv

Rounding
Exponential/
Logarithmic Special Other

Floor Exp^ Erf Inv

Ceil Expm1 Erfc Div

Round Ln^ ErfInv

Trunc Log10^ ErfcInv (New)

Rint Log1p CdfNorm (New)

NearbyInt CdfNormInv (New)

Modf

All functions are available for Real data types.
^ Indicates support for Complex data types.
^^ Indicates support for ONLY Complex data types.

Accuracy Modes

VML functions support Single and Double Precision and are provided

with three performance/accuracy modes. Having multiple accuracy

modes is a key feature that separates Intel MKL from vectorizing

compilers. With Intel MKL, you can choose the precision and accuracy

that best meets your needs and thus maximizes performance of your

specific code.

See detailed VML Performance and Accuracy tables of all functions
on various Intel® processor-based systems at http://www.intel.com/
software/products/mkl/data/vml/vmldata.htm.

15

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

http://www.intel.com/software/products/mkl/data/vml/vmldata.htm
http://www.intel.com/software/products/mkl/data/vml/vmldata.htm

In summary, use the Vector Math Library in Intel MKL to ensure you

get maximum performance instead of relying on your compiler to

vectorize your code. The Intel® MKL Vector Math Library gives you

more control and can massively increase the performance of your

application compared to nonvectorized scalar functions from

compiler runtime libraries.

References
Intel® VML Performance and Accuracy: Find detailed information on

performance and accuracy of Intel MKL Vector Math Library (VML) on

various Intel processors at http://www.intel.com/software/products/

mkl/data/vml/vmldata.htm.

Vector Statistical Library
The Intel Math Kernel library includes an expanding amount of

statistical functionality that we aggregate into a sub-library, which

we call the Vector Statistical Library (VSL). The Intel® MKL Vector

Statistical Library today includes Convolution/Correlation and an

extensive collection of random number generators.

Convolution/Correlation

VSL provides a set of routines intended to perform linear convolution

and correlation transformations for single and double precision data.

We provide:

 	Fourier and Direct Algorithms •	

 	One or Multiple Dimensions •	

 	Single and Double Precision •	

 	C and Fortran Interfaces •	

 	Modern Easy-to-Use “Task”-oriented API •	

 	 IBM ESSL* Interface for ESSL Users•	

Detailed information on the Convolution and Correlation routines in

the Intel MKL Vector Statistical Library can be found in the Intel MKL

Reference Manual at http://www.intel.com/software/products/mkl/

docs/WebHelp/mkl.htm.

Random Numbers

Speed up your simulations using our vector random number

generators, which can provide substantial performance improvements

over scalar random number generator alternatives.

The Intel MKL Vector Statistical Library (VSL) contains a collection of

random number generators for a number of probability distributions.

All VSL functions are highly optimized to deliver outstanding

performance on Intel® architecture.

Applications that can significantly improve performance with VSL

include simulation algorithms commonly used in physics, chemistry,

medical simulations, and financial analysis software. The library

provides both Fortran and C interfaces for all VSL functions.

VSL provides nine basic random number generators that differ in

speed and statistical qualities, as shown below.

Basic Random-Number Generators (BRNGs)

Pseudo-random

MCG59 Multiplicative Congruential Generator 59-bit

MCG31m1 Multiplicative Congruential Generator 31-bit

MRG32k3a Multiple Recursive Generator 32-bit

R250 Generalized feedback shift register

Wichman-Hill A set of 273 basic generators

MT19937 Mersenne Twister

MT2203 A set of 1024 Mersenne Twister basic generators

Quasi-random

Sobol A 32-bit Gray code-based generator

Niederreiter A 32-bit Gray code-based generator

VSL supports multiple methods for creating random streams, including

the leapfrog method and the block-splitting method. For large Monte

Carlo simulations, VSL provides routines to save or restore random

streams to or from a file. The abstract streams give greater flexibility

in the use of distribution generators with random data stored in a

buffer.

VSL also provides support for user-designed basic generators, as well

as for numerous continuous and discrete distribution generators.

Distribution Generator Types

Continuous Discrete

Uniform Uniform

Gaussian UniformBits

GaussianMV Bernoulli

Exponential Geometric

Laplace Binomial

Weibull Hypergeometric

Cauchy Poisson

Rayleigh Poisson with varying mean

Lognormal Negative binomial

Gumbel —

Gamma —

Beta —

16

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

http://www.intel.com/software/products/mkl/data/vml/vmldata.htm
http://www.intel.com/software/products/mkl/data/vml/vmldata.htm
http://www.intel.com/software/products/mkl/docs/WebHelp/mkl.htm
http://www.intel.com/software/products/mkl/docs/WebHelp/mkl.htm

Random Number Generator Performance

VSL functions operate on single- and double-precision real vector

arguments and can provide substantial performance advantages over

scalar implementations. Tables containing complete performance

information for all VSL random number generators and distributions

on Intel processors are available here.

To demonstrate the optimized performance of Intel Math Kernel

Library, we compared the standard C rand() function to the Intel MKL

vector uniform random number generator. Intel MKL VSL functions

are thread-safe, so we also present the speed of the Intel® MKL

vector uniform random number generator after it has been

parallelized using OpenMP.

VSL Performance vs. C Code on
Intel® Xeon® Processor-based System2

Intel Xeon
Processor1 Running Time (seconds) Speedup vs. rand() (times)

Standard C rand()
function

40.52 1.00

Intel® MKL VSL random
number generator

6.88 5.89

OpenMP* version
(8 threads)

0.92 44.04

1.	Two-way Quad-Core Intel® Xeon® processor-based system (8 cores total),
running at 2.4 GHz with 2x8MB L2 cache and 4GB memory with Windows*
2003 Enterprise x64 Edition and Intel® C++ Compiler 10.0

2.	 Intel® 64 architecture version of Intel® MKL VSL was used in measurements

Comparison of Intel MKL to Alternative Libraries
Visual Numerics Inc. and Numerical Algorithms Group Ltd. are providers

of popular numerical and statistical libraries. Visual Numerics provides

a collection of mathematical and statistical analysis subroutines for

Fortran and C/C++ users known as the IMSL Fortran 90 MP Library

(F90MP*) and the IMSL C Numerical Library*, respectively. Numerical

Algorithms Group provides numerical libraries for C/C++ and Fortran

users known as NAG Fortran 77 Library*, NAG Fortran 90 Library*,

NAG C Library*, NAG SMP Library*, and the NAG Parallel Library*.

The following table presents summary information on random number

generation capabilities existing in the Intel MKL 10.2, IMSL F90MP 6.0,

and NAG Fortran 77 (Mark 21) libraries.

Intel® Math Kernel Library (Intel® MKL) 10.2
Features vs. IMSL* and NAG*

Feature Intel MKL IMSL NAG

BRNGs 7 pseudorandom
2 quasi-random

9 pseudorandom
1 quasi-random

2 pseudorandom
3 quasi-random

User-designed
BRNGs

Supported User-designed BRNG
replaces library
BRNGs; many library
services do not work
with user-designed
BRNG

Not supported

Sequence
manipulation

•	Mechanisms of
creating, copying
and deleting
streams

• 	Saving/restoring
stream to/from a
file

•	Arbitrary number
of random streams
based on one or
more BRNGs

•	Service subroutines
for switching
between BRNGs

•	Subroutines
for saving and
restoring BRNG
seed

•	Subroutines
for saving and
restoring state
tables for GFSR and
shuffled BRNGs

•	Subroutines
for saving and
restoring BRNG
seed

•	Service subroutines
for switching
between BRNGs

Sub-sequence
splitting

•	Support for both
“skip-ahead” and
“leapfrog” methods

•	Skip-ahead method
allows skipping an
arbitrary number
of elements in a
sequence

•	Leapfrog method
allows splitting
into an arbitrary
number of non-
overlapping
subsequences

Limited skip-ahead
method support
(only skipping
100,000 elements in
a sequence)

Not supported

Distribution
generators
and other
BRNG-related
functionality

•	20 univariate
•	1 multivariate
•	Multiple

transformation
methods available
by passing method
ID as parameter

•	24 univariate
•	3 multivariate
•	General discrete,

continuous
univariate and data
based multivariate
generators

•	Random orthogonal
and correlation
matrices, two-
way tables, order
statistics, samples
and permutations,
stochastic
processes

•	Multiple
transformation
methods available
as separate
subroutines

•	ORNGs are for
uniform distribution
only

•	24 univariate
•	2 multivariate
•	General univariate

distribution
generator

•	Random samples,
permutations,
time-series
models, orthogonal
and correlation
matrices, random
tables

•	Multiple
transformation
methods are not
available

•	ORNGs are for
uniform, Gaussian
and lognormal
distributions

Vector/scalar
interface

Vector interface only Some distribution
generators have
vector and scalar
form; others are
of either vector or
scalar form only

Some distribution
generators have
vector and scalar
form; others are
of either vector or
scalar form only

Programming
languages
interface

C and Fortran
interface in a single
package

Fortran, C and Java*
interface in separate
packages

C and Fortran
interface in separate
packages

Supported
hardware

•	Intel® architectures
only

•	Highly optimized
for target
architecture

Multiple platforms
(e.g., Intel, Cray, HP,
IBM, Sun)

Multiple platforms
(e.g., Apple, Cray, HP,
IBM, Sun)

Two methods for generation of normally distributed random numbers are
available in the library starting from Mark 20.

17

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

The following table presents numerical and performance results

on an Intel Xeon processor-based system for the three libraries

with random number generation capabilities, namely for Intel MKL

10.2, IMSL F90MP 6.0, and NAG SMP Fortran 77 Library (Mark 21).

Speedups are measured against the slowest version.

Performance Comparison: Black-Scholes Option-Pricing Model1, §

Library
Basic

Generator

Option Value (Exact Value) Absolute Error (Standard Error) Time
(seconds)

Speedup
(times faster)Call Put Call Put

Intel® MKL

MCG31m1
16.7306

(16.7341)

7.2177

(7.2179)

0.0036

(0.0019)

0.0002

(0.0009)
4.671 8.78

MCG59
16.7364

(16.7341)

7.2162

(7.2179)

0.0023

(0.0019)

0.0017

(0.0009)
4.86 8.44

MT19937
16.7349

(16.7341)

7.2164

(7.2179)

0.0007

(0.0019)

0.0015

(0.0009)
5.078 8.08

NAG Original
16.7339

(16.7341)

7.2182

(7.2179)

0.0002

(0.0019)

0.0003

(0.0009)
11.45 3.58

IMSL

MT19937
16.7324

(16.7341)

7.2178

(7.2179)

0.0017

(0.0019)

0.0001

(0.0009)
35.703 1.15

Minimal Standard
16.7343

(16.7341)

7.217

(7.2179)

0.0001

(0.0019)

0.0009

(0.0009)
41.031 1.00

We used the “minimal standard” and 32-bit MT19937 basic generators

in the IMSL library. We used the “original” basic generator in the NAG

library. For Intel MKL 10.0, we used three basic generators: MCG31m1,

MT19937, and MCG59. The last being identical to the “original” basic

generator in NAG libraries, while properties of MCG31m1 are similar to

the “minimal standard” basic generator from IMSL.

For more information on this performance test, please refer to the

white paper Making the Monte Carlo Approach Even Easier and Faster

by Sergey A. Maidanov and Andrey Naraikin at: http://www.intel.com/

cd/ids/developer/asmo-na/eng/95573.htm.

In summary, the Vector Statistical Library of Intel Math Kernel Library

contains Convolution/Correlation and a comprehensive set of random

number generators that are highly optimized for Intel architecture and

can significantly increase the performance of your application over

alternative solutions.

References
Intel VSL Performance Data: Find complete performance

information for all Intel VSL random number generators and

distributions on Intel Xeon and Intel Itanium processors at

http://www.intel.com/software/products/mkl/data/vsl/vsl_

performance_data.htm.

Intel VSL Notes (PDF 1.2MB): View detailed information on VSL

BRNGs and distributions, and random number generators in general at

http://www.intel.com/cd/software/products/asmo-na/eng/347649.htm.

Monte Carlo European Options Pricing (PDF 85KB): See a paper

discussing the use of popular random number generators in derivative

security pricing at http://software.intel.com/en-us/articles/monte-

carlo-simulation-using-various-industry-library-solutions.

1. Monte Carlo is a valuable tool for performing real-time financial analysis of complex, worldwide markets. In our example, we consider the well-known
Black-Scholes option-pricing model, which is a framework for thinking about option pricing and is a de facto standard in the financial world.

18

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

http://www.intel.com/cd/ids/developer/asmo-na/eng/95573.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/95573.htm
http://www.intel.com/software/products/mkl/data/vsl/vsl_performance_data.htm
http://www.intel.com/software/products/mkl/data/vsl/vsl_performance_data.htm
http://www.intel.com/cd/software/products/asmo-na/eng/347649.htm
http://software.intel.com/en-us/articles/monte-carlo-simulation-using-various-industry-library-solutions
http://software.intel.com/en-us/articles/monte-carlo-simulation-using-various-industry-library-solutions

LINPACK Benchmark
Intel provides free LINPACK benchmark packages built with Intel MKL

to help you obtain the highest possible benchmark results for your

Intel architecture-based systems.

Intel® Optimized LINPACK Benchmark packages can help you in

your quest to obtain the highest possible benchmark results

for Intel architecture-based systems. These free packages are

implementations of the LINPACK benchmarks, which use BLAS

and LAPACK software that has been highly tuned for maximum

performance on Intel Xeon processor-based and Itanium-based

systems. These same high performance BLAS and LAPACK routines

are available to software developers in the Intel Math Kernel Library.

Intel offers two LINPACK benchmark packages:

Intel® Optimized SMP LINPACK Benchmark package

For use on SMP machines. This package contains implementations

of the LINPACK 1000 benchmark code* (http://www.netlib.org/

benchmark/1000d). See below for performance and download

information.

The package includes the executables listed below, as well as shell

scripts and input files.

Intel® Optimized (SMP) LINPACK Benchmark 10.2

File Name Description

linpack_itanium 64-bit program executable for Itanium®-based systems.

linpack_xeon32 32-bit program executable for Intel® Xeon® processor-based systems.

linpack_xeon64 64-bit program executable for 64-bit Intel® Xeon® processor-based systems.

Intel® Optimized MP LINPACK Benchmark for Clusters package

This package is an implementation of the Massively Parallel

MP LINPACK* (http://www.top500.org/) benchmark for use on

distributed memory computer systems (clusters). Use this package

to benchmark your computer cluster for submission to the Top 500

Supercomputers list.

Intel® Optimized MP LINPACK Benchmark 10.2 for Clusters

File Name Description

HPL 1.0a The complete HPL 1.0a distribution, as well as additional files to make HPL
easier to use.

nodeperf.c A program to test for DGEMM performance consistency on all cluster nodes.

Ease of Use

The Intel Optimized LINPACK benchmark packages have been

designed to save you time. Fewer file downloads, no need to compile,

and less iterating are benefits that save your valuable time. The Intel

Optimized SMP LINPACK benchmark package doesn’t require any of

the time-consuming searching that HPL does, and while the Intel

Optimized MP LINPACK benchmark package does do searching, it

provides information early in the process so you don’t have to wait

until the entire run is completed before reconfiguring and beginning

another run. Try the Intel Optimized LINPACK benchmark packages and

see how much time you save.

See the LINPACK benchmark chapter of the Intel® MKL Users Guide for

more information.

Elapsed
Time h:mm

Intel® Optimized SMP
LINPACK binary

Elapsed
Time h:mm HPL

0:00 Start 0:00 Start

0:00 Download Intel Optimized
LINPACK package 0:00 Download HPL

0:10 Configure scripts 0:10 Download BLAS

0:20 Start Run 0:20 Download MPI

1:00 Collect Results 0:30 Build MPI

1:00 Build HPL

1:30 Start Run 1

2:30 Review Results

2:50 Change HPL.dat for
improvements

3:00 Start Run 2

4:00 Review Results

Iterate changing HPL.dat
and running until satisfied
with results. Can take many
iterations.

8:00 Call it a day and vow to
finish tomorrow…

19

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

http://www.netlib.org/benchmark/1000d
http://www.netlib.org/benchmark/1000d

Performance
The following charts show the impressive performance that the Intel

Optimized SMP LINPACK Benchmark package has achieved:

91.5 percent of theoretical maximum performance on Quad-Core •	

Intel Xeon processor based systems.

Improved performance with newer versions of Intel MKL, up to 43% •	

better performance with MKL 10.2 compared to MKL 9.1

Downloads
The Optimized LINPACK and MP LINPACK benchmark packages listed

below are available for free download.

Download now at http://www.intel.com/cd/software/products/

asmo-na/eng/363191.htm

Package
Download

Size

Package Contents

Intel® Optimized
LINPACK Benchmark

Intel® Optimized MP
LINPACK Benchmark

for Clusters

Source Binary Source Binary

Linux*
package (.tgz)

6.71MB X X X

Windows*
package (.zip)

3.79MB X X X

Mac OS*
package (.tgz)

763KB X

Questions/Comments?

Do you have feedback on the LINPACK benchmark? You can post a

comment at the Intel MKL user forum at http://softwarecommunity.

intel.com/isn/Community/en-US/forums/1273/ShowForum.aspx

References
Intel® Cluster Tools: http://www.intel.com/cd/software/products/

asmo-na/eng/cluster/244171.htm

Compatibility

Operating Systems

Intel MKL 10.2 supports Linux*, Windows* (including HPC Server

2008) and Mac OS* X. Linux variants include: Red Hat*, Suse*, Debian*,

Ubuntu*, Asianux*, and other Linux Standard Base 3.1 variants.

Development Environments

Intel MKL is easily used and integrated with popular development tools

and environments, such as Microsoft Visual Studio*, Xcode*, Eclipse*,

and the GNU Compiler Collection (GCC).

Processors

Intel MKL 10.2 supports all Intel Architecture compatible processors

and is specifically optimized for:

Intel Xeon processor family •	

Intel Core processor family •	

Intel Itanium processors family •	

Intel Pentium processor family •	

AMD Opteron* and Athlon* processor families•	

NOTE: Intel MKL for Mac OS* X is not available as a standalone

product. It is only available with the Intel C++ Compiler Professional

Edition and Intel Fortran Compiler Professional Edition.

Technical Support
Every purchase of an Intel® Software Development Product includes

a year of support services, which provides access to Intel® Premier

Support and all product updates during that time. Intel Premier

Support gives you online access to Intel MKL discussion forum,

technical notes, application notes, and documentation. Install the

product, and then register to get support and product update

information.

Intel® Premier Support
Receive one year of world-class technical support with every purchase

of Intel MKL. During this period, you can download product upgrades

free of charge, including major version releases. For more information,

visit the Intel Registration Center at https://registrationcenter.intel.

com/RegCenter/Register.aspx. Additionally, the user forum is a great

place to get community support.

20

Intel® Math Kernel Library (Intel® MKL) 10.2: In-Depth

http://www.intel.com/cd/software/products/asmo-na/eng/363191.htm
http://www.intel.com/cd/software/products/asmo-na/eng/363191.htm
http://softwarecommunity.intel.com/isn/Community/en-US/forums/1273/ShowForum.aspx
http://softwarecommunity.intel.com/isn/Community/en-US/forums/1273/ShowForum.aspx
http://www.intel.com/cd/software/products/asmo-na/eng/cluster/244171.htm
http://www.intel.com/cd/software/products/asmo-na/eng/cluster/244171.htm
https://registrationcenter.intel.com/RegCenter/Register.aspx
https://registrationcenter.intel.com/RegCenter/Register.aspx

User Forum
Share experiences with other users of Intel MKL at the Intel

moderated Intel MKL Discussion Forum at: http://softwarecommunity.

intel.com/isn/Community/en-US/forums/1273/ShowForum.aspx

References
See all of the documentation available for Intel MKL at http://www.

intel.com/cd/software/products/asmo-na/eng/345631.htm

§.	 Performance tests and ratings are measured using specific computer systems and/or components and reflect the appropriate performance
of Intel products as measured by those tests. Any difference in system design or configuration may affect actual performance. Buyers should
consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more
information on performance tests and on the performance of Intel products, go to http://www.intel.com/software/products/
	© 2009, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Core, Itanium, Pentium, and Xeon are trademarks
of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.
0209/BLA/CMD/PDF 321515-001

http://softwarecommunity.intel.com/isn/Community/en-US/forums/1273/ShowForum.aspx
http://softwarecommunity.intel.com/isn/Community/en-US/forums/1273/ShowForum.aspx
http://www.intel.com/cd/software/products/asmo-na/eng/345631.htm
http://www.intel.com/cd/software/products/asmo-na/eng/345631.htm
http://www.intel.com/software/products/

	Intel® Math Kernel Library (Intel® MKL) 10.2
	Highlights
	Features
	Multicore ready
	Automatic runtime processor detection
	Support for C and Fortran interfaces
	Support for all Intel® processors in one package
	Royalty-free distribution rights

	New in Intel MKL 10.2
	Performance Improvements
	C#/.Net support
	BLAS
	LAPACK
	FFT
	PARDISO

	New in Intel® MKL 10.1
	Computational Layer
	PARDISO Direct Sparse Solver
	Sparse BLAS
	LAPACK
	Discrete Fourier Transform Interface (DFTI)
	Iterative Solver Preconditioner
	Vector Math Functions
	User’s Guide

	Performance Improvements in Intel MKL10.2
	Performance Improvements in Intel MKL 10.1
	Performance Improvements in Version 10.0
	BLAS
	LAPACK
	FFTs
	VML/VSL

	Functionality
	Linear Algebra: BLAS and LAPACK
	BLAS
	Sparse BLAS
	LAPACK
	BLAS and LAPACK Performance
	Linear Algebra: ScaLAPACK
	ScaLAPACK Performance
	Raw Performance
	Block Size Robustness

	References
	Linear Algebra: Sparse Solvers

	PARDISO*: Parallel Direct Sparse Solver
	New Out-of-Core Support!

	Iterative Solvers
	FGMRES Solver
	Conjugate Gradient Solver
	ILU0/ILUT Preconditioners
	Sparse BLAS

	References
	Fast Fourier Transforms (FFT)

	Interfaces
	Fortran and C
	Modern FFT Interface
	FFTW Interface
	Performance (Shared Memory Parallel)
	2-D Transforms
	3-D Transforms
	Performance (Distributed Memory)

	References
	Vector Math Library
	Performance
	Accuracy Modes

	References
	Vector Statistical Library
	Convolution/Correlation
	Random Numbers
	Basic Random-Number Generators (BRNGs)
	Distribution Generator Types
	Random Number Generator Performance

	Comparison of Intel MKL to Alternative Libraries
	References
	LINPACK Benchmark
	Ease of Use

	Performance
	Downloads
	Questions/Comments?

	References
	Compatibility
	Operating Systems
	Development Environments
	Processors

	Technical Support
	Intel® Premier Support
	User Forum
	References

